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A solution of the nonstat ionary problem of droplet  growth is presented together  with results  
of a study of the effect of edge wetting angle on increase  in droplet  size and amount of heat 
dissipated by the droplet.  

The problem of droplet growth is a major  one in methods of calculating heat exchangers which operate 
in droplet conde~isation regimes.  Usually [1-4] the problem is solved in a quasis ta t ionary formulation,  d rop-  
ping the loca! t e rm in the thermal  conductivity equation and assuming,  as a rule,  that boundary conditions are 
stat ionary.  In [1] this approach was justified, on the grounds that the problem of droplet  growth belongs to the 
class  of so-cal led  Stefan problems,  methods for the solution of which have not been sufficiently developed. 

In [1, 3] the t empera tu re  distr ibution was obtained in the form of a diverging ser ies  of Legendre p o l y -  
nomials.  In [5] the quasis ta t ionary and nonstat ionary problems were sotved with the aid of asymptotic  r e p r e -  
sentations,  which limits the applicability to low limiting wetting angles, which are  void of interest  in those 
cases  where reliable droplet  condensation must be provided. At the same t ime,  numerical  methods permit  
considerat ion of the local t e r m  in the thermal  conductivity equation, the change in the boundaries of the inte-  
gration region with t ime, and the dependence of boundary conditions upon this change. Below we will present  
a solution of this problem with some resul ts  of numerical  calculations.  

We will consider  a droplet  on a plane wall (Fig. la ) ,  the tempera ture  of which T w is constant and given. 
The boundary conditions on the droplet  free surface  have the form 

d0 
a (~v --~) @rfJP(Pv--Pls ) = - -~ l  -~-  " (1) 

Here d = T-Tw, where T is the droplet temperature, a function of two coordinates, the radial ~ and 

meridional q0 (temperature is assumed constant along longitude). The coefficient of convective heat transfer 

from the moving vapor to the droplet a can be found, e.g., from the expression [6] 

Nu = 2 + 0,03 Pr~176 + 0,35Pr~176 (2) 

or [7] 
0 6  0 3 3  

Nu = 0,41Rena~Pr ' . (3) 

Following Berman [7], we define the mass-transfer coefficient from the formula 

Nu D = 0.55Nuofl~-O, 35 eaOr , 65, 

where Ilg = (Pv-Pls)/Pva; eai r = Pair/Pva; and NUDI is the diffusion Nusselt number for limitingly low vapor 
content m ti~e mixture, where the mass-transfer empirical formulas obtained to describe the heat-transfer 

process can be used. We may use Eq. (2) or Eq. (3) as such formulas, substituting in place of the Prandtl 
and Nusselt numbers the corresponding diffusion numbers: 

pr D -- Vva and NUD= ~pd 
DRv,Tva D~ 

(4) 

There exist other descriptions of the boundary conditions, considering mass transfer on the droplet free sur- 
face. They do not differ in principle from Eq. (4), the significant advantage of which is that it has been obtained 

from experiments characteristic of steam turbine condenser operation. 
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For solution of droplet growth problem. 

As an initial condition we can take d(G 9)) = 0 and a prespecKied droplet radius, equal, e.g., to the 

radius of a nucleus, determined by one or the other method. 

We will seek the temperature distribution within the droplet by solving the heat-transfer equation: 

_ ( a2~ 2 a~ I a2~ ctgqo o~ 
/ 

(5) 

fo r  the given boundary  and initial condi t ions .  Us ing  the re la t ionsh ips  d = 0~0, t = TT0, ~= ~R, we r educe  Eq. 
(5) to the f o r m  

a~ = •  a~2 + + a~o ~-T a-T~ + ~ a,p ~ + a~ a~ ' 

which now has an integration range which does not change with time. The coefficient ~ = a~-0/R 2 is nathrally 

time dependent. 

We will now introduce an assumption which significantly eases numerical solution of the problem while 

producing practically no distortion Of the physical essence of the phenomenon. We will assume that the drop- 

let center contains a thermally insulated sphere of as small a diameter as desired; Then the half of the drop- 

let in the shape of a truncated sphere (Fig. la) in the Cartesian coordinate system 4, 9) takes on the form de- 

picted in Fig. lb. Now the boundary conditions will be 0 = 0 on the line DE, condition (i) at ~ = i, ~0/8~ = 0 

for  ~ = [o, 80/89)=0 for  qo = 0 and 9) = 7r. Here  ~0 = R0/R; R0 is the rad ius  of the sma l l  insulated sphe re .  

We wr i te  Eq. (6) in the f o r m  
1 O0 

- -  - -  L10 + L20, (7)  

where  

L10= 020 ( 2  O0 ~_[ R OR) O0 1 020 ctgq~ a0 

In the range  of continuous change of the a r g u m e n t s  ~ and 9) we c o n s t r u c t  a un i fo rm grid with s teps  zX4 and Ag). 
Then the boundary  DE of the reg ion  of Fig.  l b  changes  a long a s tepl ike  l ine,  at the points of which 0 = 0. 

We r ep l ace  the o p e r a t o r s  L I and L 2 with d i f f e rence  o p e r a t o r s  

1 ( 1 ~t'] p OR 19/+1,j--0s , 
A~0 = - - ~  ( 0 ' + ' ' i - 2 0 ' ' i + 0 ~ - ~ ' i ) +  ~-~-i + 2aT---~" 0"r ] A[! 

A~0 - 1 ctg ,p~,i [~,jA~pz (0~,j+~- 20~,i + 0,,j_ 0 + 2Aqg~,j (0, , j+~- 0,,j_l), 

i x 0 ,  1, 2 . . . . .  W(cp), j = 0 ,  1, 2 . . . . .  M(D. 

Acco rd ing  to the method of va r iab le  d i r ec t i ons ,  the t r a n s i t i o n  f r o m  the n- th  m o m e n t  of  t ime  to the n + l - t h  
is accompl i shed  in two s teps  with a t ime  s tep  AT/2.  In i t ia l ly  we solve  the equat ion 

2 : 1 (8) 
h~• (0~+7 - -  0~) = A~0~+5- + A~0~ ' 
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Fig. 2. Droplet  t e m p e r a t u r e  
head d is t r ibut ion  (d,  deg) r e -  
lative to wall  t e m p e r a t u r e .  

explici t  in q~ and implici t  in ~, and then 

__ ! �9 I A20,, + 1 2 (0nT1 0n@-~) = A,0~+-5 - § 

explici t  in ~ and implic i t  in q~. Here  O n, 0n+~/~ and 0 n+~ are  the values of the des i red  grid function at the 
t i m e s  z = 7n, r = ~n + A7/2 and 7 = 7n + AT, r e s p e c t i v e l y .  

The coef f i c i en t  K = aTo/R 2 is  defined f r o m  the equat ion  

dV e Y•--• : = n  ' 
dFls 

FlS 

(9) 

(10) 

where  
dV d l? 

=k~RZ-" ; k = 4 - - ( t - - c o s ~ ) a ( 2 + c o s ~ ) ;  ~ x - - 5 .  (11) 
dt dt 

Substi tuting Eq. (11) i n E q .  (10), we find 
6 

d Rdt r92 ~ ' [ ~  0--~-0 + c C ( O v - - ~ ) l / t k  O~ ~=Rsinq)dq~ 
0 

Solving this equation at each s e m i s t e p , w e  find the drople t  rad ius ,  and hence,  the coeff ic ient  z .  The values o f  
Od/O~ and d on the drople t  f ree  sur face  are  then defined f rom the resu l t s  for  the preceeding moment  in t ime.  

With cons idera t ion  of Eq. (7), Eqs. (8), (9) reduce to the fo rm 
, , I (12) 

a. -0 ~+-7- --  �9 n'~+~-z- ~ n~+-ff- - -  [~,j, I, l  i + l , ]  C t , l ~ i , ]  I ~ t ' l - i  l , ] =  

' ' ( 1 3 )  A ~n+l c~..n,~+.~ ~ an+~ F.~T-7 - 
zai,i~i,]Q_ I - -  ~ t , l . t ,  1 @ z~ ' i , j v i , j - - I  = - -  t .  I where 

C i , i =  - -  

F,j+.@ 1 
, , I  A~2 

1 1 ( 1 + ~z,] R O R ~ .  1 1 ( 1 ~i,] ROR~; 

2 2 , [  ,1 ctg ,,, n ] 2 
A~ z xAT" "fi'i= ~,i(07'i+~--207'i+0Y'i-')S-@4-' 2hqD (O~' i+l--Oi ' i - ' )q-  ~A-~-r 0~'i; 

1 ctg q0,.: 1 ctgq~,/ . c ~ . / =  2 ( 1 § 1 ) 
A ~ . j -  o z 4 ; B ~ ' i =  ' ~ . A @  ~ ; ~?,ihqD 2Aq0 ~,iA~0 z 2htp ,~ 

, I i 1 1 ~ i , i  R OR t0n+y ~o~+v_ 2o~+v+o?+y) + + _ o~+ 2 o?+-~ 
- - - - ' ~ i ' ] - l , ]  1,1 t~ - l , ,  ~ 2aT0 ~ x iq - , , ]  --l,-~]) @" gA"f t , !  " 

We will solve Eqs.  (12), (13) by the dr ive method [8] along the coordinates  ~ and qo, respec t ive ly .  
t ion of Eq. (12) will have the fo rm 

07.+ _ , ,  O n + ~  - 
~ , i  - -  r i + l  i + x  , i  -}-  ' q i + ~  , /  

The solu-  

(14) 
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Fig.  3. Drople t  rad ius  (R, m) (a) and amount  of heat  
t r a n s f e r r e d  through drop le t  (Q, W) (b) vs t ime ( t , s ec ) .  

where  

aid /~') + b~']~l~'i (15) 
3] i+ l , i  ~ , I ] i+1  , ]  

Ci , i  - -  b i , i Y i , i  C i , ] - -  b i , i Y i , i  

Using the boundary  condi t ion O00~ ~=~0= O, we find 

~1 , / ' ~  
ao,i + bo,i [o,i 

, ~ l ~ , i - - -  Co, i Co, i 

The r ema in ing  values of the d r ive  coeff ic ients  7 '  ' and ~i i a r e  found f r o m  the r e c u r s i v e  re la t ionsh ips  (15). 
l,J ,j - / 

the d r ive  coef f ic ien ts ,  we use Eq. (14) to define 071+1/2. It is then n e c e s s a r y  to ini t ia t ly  define 0n~1./2 Knowing l , j  IN,J 
at the d rop le t  su r f ace .  This value of the d imens ion l e s s  t e m p e r a t u r e  is found f r o m  boundary  condi t ion (1) and 
Fq. (14) 

( ~vA~Ra A~Rrf~p 
11N'i + OoXZ + ~ (Pv- -P l s )  

1 ~+ 

ON,i2 = ] 1 - -  '~N,] -~ 
XZ 

I 
t 0 

for 0 ~-~ qo-~ 5, (16) 

for 5 < T ~ ~' 

The equat ions of Eq. (16) a r e  nonl inear ,  s ince  tip and Pls depend upon the d rop le t  s u r f a c e  t e m p e r a t u r e .  
The par t ia l  p r e s s u r e  of the vapor  nea r  the d rop le t  su r f ace  then obeys  the wel l -known law of med ium p r e s s u r e  
as a function of s a tu ra t i on  t e m p e r a t u r e .  This funct ion is usua l ly  p re sen ted  tabu la r ly .  In the p r e sen t  s tudy  the 
tabula r  values w e r e  approx imated  by a p iecewise  l i nea r  function at 10 ~ in te rva ls  over  the range  0-100~ 

The s e a r c h  for  the quanti ty 0n+1./2 ove r  the in terval  0 <_ ~o _< 5 was p e r f o r m e d  in the fol lowing manne r .  
Equat ion (16) was wr i t t en  in the for i~ 3• 

( p v  - -  p I $  ) 1 
�9 cO (0~+jT)., = 0o)~ z t%X z . + - -  (17 ) A~Ra ON, 9 = O. 

1 - - y N , ] +  Z,I 

A s s u m i n g  ini t ia l ly  that  Pls = Pv, we find f r o m  the equat ion p = f (Tsa  t) the value of Tsa t  and c o r r e s p o n d "  
ing value of 0. Subst i tut ing this value in Eq. (17) we d e t e r m i n e  the s ign of the funct ion ~. We then r educe  the 
value of 0n+l/2 by an amount  A0 until  the s ign of  the function �9 does not change ,  thus de l imi t ing  the r eg ion  in 

N,I  
which the roo t  of Eq. (17) is loca ted .  The re f inement  is c a r r i e d  fu r the r  by dividing the in te rva l  in half.  E q u a -  
t ion (13) is solved in a s i m i l a r  m a nne r .  

The method d e s c r i b e d  can  be used as a bas is  fo r  solut ion of the q u a s i s t a t i o n a r y  p rob l em,  whe re  ins tead 
of Fq.  (6) we solve  the equat ion 

00 (?z0 2 00 1 020 ctgcp 00 
0~ a~ ~ + B O~ t- ~2 0@ -F ~z Oq0 ' (18) 
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Fig. 4. Quantity of heat removed through droplet by con- 
vection (Q2, W) and condensation (Qi, W) vs time. 

where T is a fictitious time value. Equations (2) and (16) are calculated for fixed droplet radius. As is well 
known [9], the solution of the nonstationary equation (18) as 7 --~ ~ and for stationary boundary conditions tends 
to the solution of the stationary problem A0 = 0 (where A is the Laplacian in the spherical coordinate system). 

It is important to note that the solution of the nonstationary problem, which describes the phenomenon 
more correctly, is less cumbersome and requires less machine time than the solution of quasistationary prob- 
lems for a series of fixed radius values. 

Figure 2 shows the temperature distribution at time 0.5.10 -3 sec in a droplet with limiting wetting angle 

of 135 ~ Figure 3 shows droplet radius and the quantity of heat transferred through the droplet as functions of 
times for various wetting angles. Also shown are results of solving the quasistationary problem (dashed lines). 
We see that consideration of the nonstationary nature of the process has an especially marked effect on cal- 
culation of the heat transferred through the droplet (Fig. 3b). With increase in the wetting angle the amount 
of heat transferred through the droplet decreases. Such a result, although completely understandable, since 
with increase in this angle the thermal resistance of the droplet increases, still provides no basis to assume 
that hydrophobic materials providing relatively small wetting angles would be preferable. In fact, it is im- 
portant for intensification of the process that droplets separate, which naturally occurs more rapidly at larger 
wetting angles. The simultaneous solution of these two problems will establish the optimum value of wetting 
angle and permit formulation of the basic requirements relative to hydrophobic materials. 

Figure 4 depicts the quantity of heat removed by convection and condensation at a wetting angle 6 = 95 ~ 
We see that at the beginning of the process, the convective fraction is greater than the condensation, and it is 
only at sufficiently large droplet size that the generally recognized concept of insignificant convective heat ex- 
change with respect to heat produced by vapor condensation becomes valid. 

The results obtained are insufficient to develop an engineering technique of calculating heat exchangers 
operating in the droplet condensation mode. Such a technique must contain a refinement of the boundary condi- 
tions, a solution for droplet coalescence, etc. Nevertheless, the results do provide that part of the technique 
related to droplet growth. 

The study performed permits the conclusion that it is desirable to consider the nonstationary nature of 
the droplet growth process and the necessity of finding the optimum wetting angle value. It has been estab, 
fished that in calculating the beginning of the droplet condensation process, convective heat exchange cannot be 
neglected. 

NOTATION 

Re = 2wR/uva , Reynolds number; Pr = u/a, Prandtl number; Nu = 2aR/k, Nusselt number; w, flow 
velocity; R, F, V, radius, free surface, and volume of droplet; 6, limiting wetting angle; d, diameter of 
condenser tube; u, k, a, coefficients of kinematic viscosity, thermal conductivity, and thermal diffusivity; 
~p, D, coefficients of mass liberation and diffusion; r, latent heat of vapor formation; Rv, gas constant of 
vapor; p, partial pressure; p, density; ~, ~, coordinates; t, time; to, va0, characteristic time and temperature. 
Subscripts: l, liquid; s, saturation; v, vapor; g, air; va, vapor-air mixture; is, free liquid surface of drop- 
let; nat, narrow section. 
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SELF-EXCITATION OF VORTEX STREET INTENSITY 

BEHIND A PLANE MODEL WITH A BODY IN ITS WAKE 

L. A. Ignat'evskaya and V. A. Savost'yanov UDC 533.6.071.08.778.533.6.071.082.53 

The study discovered critical conditions under which there is a periodic increase in the Karman 
vortex street intensity and an increase in pressure pulsations with a change in the distance be- 
tween a plane model and a body in it3 wake. 

The effect of various external forces on the process of vortex formation behind a model was investigated 
in [1-3]. The interest in such studies stems from the need to suppress vortex formation in order to reduce 
the drag of poorly-streamlined bodies. 

Similar investigations of the effect of splitter plates on vortex formation in the wake of a plane model 

were conducted in [4]. The dimensionless frequency of convergence of the vortex without the plate was Sh = 
0.24. With an increase in the length of the plate, the dimensionless frequency increased until the ratio of the 
plate length to half the thickness of the trailing edgel-= 1.5. Here, the value of Sh began to drop sharply; no 
vortex formation was observed at T= 2.5, and the pressure coefficient increased. The effect of a splitter 

plate affixed behind a cylinder along the wake axis on the frequency characteristics of the wake and the resis- 
tance coefficient was studied in [2]. It was observed experimentally that the location of a splitter plate behind 
the cylinder on the wake axis stops vortex formation and lowers the resistance of the cylinder by about 50%. 
It was shown that the base pressure increases when the plate is moved away from the cylinder to a distance 
equal to about four cylinder diameters, and that this is accompanied by a reduction in vortex convergence fre- 
quency. Any large displacement of the plate is accompanied by a sharp increase in the vortex convergence 
frequency, to nearly its initial value, and a corresponding sharp decrease in base pressure. 

It was shown in [5, 6] that the formation and separation of discrete vortices behind a plane model are 

accompanied by pressure pulsations near the trailing edge and the propagation of density waves in the flow 
at a frequency equal to the vortex convergence frequency. In [7] a study was made of the wave intensity and 
length, the directionality of the vortex sound, and the propagation of sound waves radiated by the vortex street. 
Also examined was the nature of interaction of the pressure pulsations in the flow and the sound waves radiated 
by a Karman street. Pressure pulsations and sound waves generated by mediums which are similar in spectral 
composition but physically quite different may interact, changing the pressure in the region of vortex formation 
and the intensity of the Karman vortex street. 

In the present work, we studied the features of vortex formation with a change in pressure in the region 
of vortex formation behind a plane model witha body located in its wake. We also studied the effect of pressure 
pulsations in the wake on the intensity of the vortex formation process. 
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